Сообщение

Семинары по теории сильных взаимодействий (ст. преп. Резниченко А.В.) [2015, Теоретическая физика, CAMRip, 720p, RUS]

Сообщение Stepan » 07 апр 2018, 23:20

Семинары по теории сильных взаимодействий (ст. преп. Резниченко А.В.)
Раздачи: 720p исходники
Страна: Россия
Тематика: Теоретическая физика
Тип раздаваемого материала: Видеолекции
Продолжительность: 50:30:00
Год выпуска: 2015
Язык: Русский
Перевод: Не требуется
Краткое описание Это запись семинаров магистерского курса Физического факультета Новосибирского государственного университета по теории Сильного взаимодействия (квантовая хромодинамика) под руководством старшего преподавателя Резниченко А.В. Так же доступны для скачивания , который читается д.ф.-м.н. профессором Фадиным Виктором Сергеевичем.
Список лекций: Семинар № 1 Напоминание (из курса "Физика элементарных частиц"). Изотопическая инвариантость. Общие замечания о флейворных симметриях SU(2) и SU(3). Изотопическая часть волновой функции π-мезона и протона. Трансформационные свойства спиноров и векторов. Реакция NN → dπ. Метод Шмушкевича, использование коэффициентов Клебша-Гордана и метод инвариантных амплитуд. Эффективный лагранжиан для реакции NN → dπ.
Семинар № 2 Реакция π N → π N: изотопическая SU(2)-инвариантная амплитуда. Эффективный лагранжиан. G-четность. Свойства G-четности: G-четность могут иметь лишь нестранные мезоны, т.е. s=B=0; [G, Ti]=0; формула G=C (-1)T для нейтральных компонент изомультиплета. Правила отбора по G-четности. Иерархия законов, запрещающих распады: связь статистики и момента; P,C,T- четности; G-четность. Пример: P-неинвариантный эффективный лагранжиан распада ω → π+ π- π0 (см. также семинар 3). Распад ρ → ππ: инвариантная амплитуда, эффективный лагранжиан, вычисление ширины распада ρ0 → π+ π-. Эффективный лагранжиан πNN-взаимодействия.
Семинар № 3 P-инвариантный эффективный лагранжиан распада ω → π+ π- π0. SU(3) флейворная симметрия: массовые формулы, ω-φ смешивание. Классификация неприводимых представлений группы SU(3). Разложение на неприводимые тензоры в группе SU(3). Инвариантные тензоры δij и εi j k. Октетные и синглетные представления для мезонов. Массовая формула 4m2K = m2π+ 3 m2η для октета псевдоскалярных мезонов: наивный кварковый счет, эффективный SU(3)-нарушающий лагранжиан δm2Tr[P2Y]. Неприводимые представления для барионов: синглеты, октеты и декуплеты. Массовые формулы для октета барионов 1/2+.
Семинар № 4 Нахождение угла ω-φ смешивания. Идеальное ω-φ смешивание. Модель векторной доминантности (МВД). Допущения модели. Связь констант gρ, gω и gφ. Вид амплитуды γ* → X(hadrons) в МВД.
Вывод соотношения gρ=gρππ в МВД. Нахождение отношения Γρ → πγ/Γω → πγ в МВД.
Семинар № 5 Калибровочная группа SU(N). Цветовая алгебра. Общее замечание о калибровочных группах. Алгебра Ли группы Ли. Коммутационное соотношение. Структурные константы. Возможность нормировки генераторов Tr[tatb]= λ δa b в алгебре группы SU(N). Полная антисимметричность структурных констант f a b c = -i/λ Tr(ta[tb,tc]) в этой нормировке. Квадратичный оператор Казимира C2=tata. Общее замечание об операторах Казимира группы SU(N) и неприводимых представлениях: явный вид операторов Казимира, таблицы Юнга, неприводимые представления SU(N) на тензорах с определенной симметрией. Соотношение полноты для генераторов ta группы SU(N) в фундаментальном представлении. Нахождение CF=(N2-1)/(2N). Вывод соотношения ta tb ta = - tb/(2N). Вывод соотношения ta tb= δa b/(2N)+ 1/2(d a b c+i f a b c) tc для генераторов в фундаментальном представлении. Свойства символов d a b c: вещественность, полная симметричность, бесследовость. Вывод соотношения f a b c f a b c'= N δc c'. Присоединенное представление для генераторов группы Ли. Тождество Якоби. Диаграммы цветовой алгебры.
Семинар № 6 Цветовая алгебра (продолжение). Вывод соотношения d a b c d a b c'= (N2-4)/N δc c'. Неприводимые тензоры в группе SU(3) и SU(N). Вывод формулы для размерности неприводимого представления (p,q) группы SU(3): dim (p,q)=(p+1)(q+1)(p+q+2)/2. Формула (без вывода) для размерности неприводимого представления в группе SU(N): пример для присоединенного представления группы SU(N). Разложение на неприводимые в группе SU(3) на примере 6⊗6=151 ⊕ 152 ⊕ 6*: тензорный метод и метод таблиц Юнга. Разложение N⊗N*=1⊕(N2-1) группе SU(N). Взаимодействие кварка и антикварка на малых расстояниях: модификация константы кулоновского взаимодействия для синглетного и октетного состояния.
Семинар № 7 Кварконии: c-c системы (мезоны ηc и J/Ψ). Оценка ширины распада ηc → γγ. Оценка ширины распада ηc → hadrons. Отношение этих двух ширин. Оценка αS(mc). Ширина распада ηc в адроны в водородоподобной модели. Оценка ширины распада J/Ψ → e+ e-. Ширина распада J/Ψ в адроны: однофотонный и трехглюонный механизмы. Оценка αS(mc) из сравнения Γ J/Ψ → hadrons/Γ J/Ψ → e+ e-. Критика нерелятивистского приближения и водородоподобной модели в системе c-c. Общие слова о непертурбативных эффектах.
Семинар № 8 Радиационные переходы в c-c системах. Магнитодипольные переходы. Оценка ширины распада J/Ψ → ηc+γ. Угловое распределение фотонов в случае "выстроенного" поляризационного состояния J/Ψ.
Электрические дипольные переходы. Угловые распределения фотонов в переходах Ψ2S → χc0+γ, Ψ2S → χc1+γ, Ψ2S → χc2+γ (нерелятивистское приближение для инвариантных амплитуд). Тензорные мезоны. Тензор поляризации. Формула суммирования по поляризациям для тензорных мезонов. Лоренц-инвариантный эффективный лагранжиан перехода Ψ2S → χc2+γ. Лагранжиан квантовой хромодинамики (КХД). Духи Фаддеева-Попова. Унитарность. Калибровочные преобразования в КХД. Фиксация калибровки. Алгоритм нахождения лагранжиана духов. Лагранжиан духов для кулоновской калибровки. Правила Фейнмана для духов, следующие из этого лагранжиана.
Семинар № 9 Лагранжиан духов в аксиальной калибровке. Бездуховые калибровки. Выражение для суммы по физическим поляризациям глюонов. Унитарность S-матрицы в физическом пространстве. Соотношение унитарности для амплитуды qq → qq в четвертом порядке теории возмущений. Вычисление мнимой части (скачков) амплитуды с помощью правил Каткосского. Вывод простейших тождеств Славнова-Тейлора для амплитуд qq → gg и qq → cc. Роль духов в выполнении соотношения унитарности.
Семинар № 10 Функции Грина в квантовой теории поля (краткий обзор свойств). Выражение для функций Грина через поля в представлении взаимодействия. Вычисление по теории возмущений. Представление функций Грина через континуальный интеграл. Производящий функционал. Редукционная формула Лемана-Симанчика-Циммермана. Связь вариации от функционала с вариацией действия в случае инвариантной функциональной меры: инвариантность функций Грина относительно преобразований, для которых δS=0. Симметрия Бекки-Руе-Стора-Тютина (БРСТ). БРСТ-симметрия для лагранжиана КЭД в лоренцевской калибровке. Проверка инвариантности действия КЭД относительно БРСТ-преобразования. БРСТ-инвариантость функций Грина. Пример: функция Грина "фотон-дух". Вывод из БРСТ-инвариантности этой функции Грина неперенормируемости продольной части фотонного пропагатора.
Семинар № 11 БРСТ-симметрия для лагранжиана КХД. Нильпотентность оператора БРСТ. Проверка инвариантности действия КХД в лоренцевской калибровке относительно БРСТ-преобразования. БРСТ-классификация состояний спектра: пространства H0 (физические состояния), H1 (антидухи и продольные глюоны) и H2 (духи и глюоны, поляризованные "назад"). БРСТ-инвариантость функций Грина в КХД. Пример: функция Грина "антидух-глюон-кварк-антикварк". Вывод соотношений, связывающих амплитуды qq → gg и qq → cc, из БРСТ-инвариантности этой функции Грина.
Семинар № 12 Вычисление β-функции в КХД в однопетлевом приближении. Перенормировка полей и операторов лагранжиана КХД. Константы перенормировки и контрчлены. Перенормированная теория возмущений, новые контрчленные вершины, условия перенормировки. Выражение для gR через константы перенормировки (для разных вершинных функций в лагранжиане КХД). Вершина взаимодействия глюон-кварк-антикварк.
Вычисление контрчлена δ3(μ) (перенормировка глюонного поля) в размерной регуляризации в фейнмановской калибровке (ξ=1): условие перенормировки для поляризационного оператора, диаграмма с четырехглюонной петлей, диаграмма с фермионной петлей, диаграмма с петлей духов.
Семинар № 13 Вычисление контрчлена δ3(μ) (продолжение): однопетлевая диаграмма с двумя глюонами. Калибровочная зависимость двухглюонного вклада и вклада духов. Восстановление поперечной структуры в поляризационном операторе для суммы диаграмм. Вычисление контрчлена δ2(μ) (перенормировка кваркового поля) в размерной регуляризации в фейнмановской калибровке (ξ=1): условие перенормировки, вычисление однопетлевого вклада. Калибровочная зависимость этого вклада.
Семинар № 14 Вычисление контрчлена δ1(μ) (контрчлен вершины q-q-g) в размерной регуляризации в фейнмановской калибровке (ξ=1). Решение уравнения Гелл-Манна-Лоу для однопетлевой β-функции: зависимость αS от μ, асимптотическая свобода. Свойства β-функции: сокращение коэффициента CF, вклад скаляров в β-функцию, однопетлевая β-функция и ряд для αS(μ) в главном логарифмическом приближении, различные способы вычисления β-функции.
Семинар № 15 Глубоконеупругое рассеяние. Уравнение Докшитцера-Грибова-Липатова-Альтарелли-Паризи (ДГЛАП). Вычисление dngg (число глюонов в глюоне): одноглюонный и двухглюонный вклады. Расходимости одноглюонного вклада. Уравнение ДГЛАП и его ядра в порядке αS. Нахождение коэффициента перед δ(1-x) в Pgg(x) из сохранения продольного импульса и в Pqq(x) из сохранения заряда кварка в процессе фрагментации.
Семинар № 16 Уравнение ДГЛАП. Преобразование Меллина и его свойства. Моменты (меллиновские образы) ядер уравнения ДГЛАП: явные выражения и аналитические свойства. Синглетные и несинглетные моменты партонных плотностей. Решение уравнения ДГЛАП для несинглетных и синглетных моментов. Общее замечание о выводе уравнения ДГЛАП в партонной модели: лестничные диаграммы, упорядочивание по поперечным импульсам, суммирование в главном логарифмическом приближении.
Семинар № 17 Перенормировка составных операторов. Перенормировка операторов O1=:Ψ(x)Ψ(x):, O2=:Ψ(x) γμ Ψ(x): и аномальные размерности этих операторов в КХД. Нулевые аномальные размерности сохраняющихся токов. Перенормировка (пертурбативной) массы кварков в КХД: нахождение mR(μ). Ренормгрупповая эволюция операторов (в случае отсутствия операторного смешивания): суммирование поправок в главном логарифмическом приближении уравнением ренормгруппы с однопетлевой аномальной размерностью. Операторное смешивание на примере теории λ φ4 и операторов O1=:∂μφ(x) ∂μφ(x): и O2=:φ(x)∂2φ(x):. Матрица аномальных размерностей.
Семинар № 18 Операторы твиста два. Несинглетные и синглетные операторы твиста два в операторном разложении глубоконеупругого рассеяния. Определения операторов твиста два в КХД. Функции Грина синглетных операторов. Операторное смешивание глюонного и фермионного операторов. Диаграммное представление. Борновские диагональные функции Грина. Контрчлены. Матрица аномальных размерностей в однопетлевом приближении. Вычисление недиагонального матричного элемента γf,g в матрице аномальных размерностей (начало).
Семинар № 19 Вычисление недиагонального матричного элемента γf,g в матрице аномальных размерностей операторов твиста два(продолжение). Выделение коэффициента перед одной из борновских структур глюонного оператора -2δa b gα βpμ1... pμN. Однопетлевые расходящиеся вклады "треугольных" диаграмм для глюонной функции Грина фермионного оператора. Нахождение контрчлена δf,g(μ). Сравнение найденного матричного элемента γf,g с элементом Af,g матрицы, входящей в уравнение ДГЛАП для синглетных моментов структурных функции. Ренормгрупповая эволюция операторов твиста два.
Семинар № 20 Операторное разложение в глубоконеупругом рассеянии. Кинематика глубоконеупругого рассеяния. Адронный тензор Wμ,ν(x,Q2). Представление адронного тензора через коммутатор кварковых токов. Доминирование области вблизи светового конуса. Тензор Tμ,ν (часть амплитуды комптоновского γ*-p рассеяния вперед). Оптическая теорема и связь Wμ,ν с мнимой частью Tμ,ν. Дисперсионное соотношение и разложение в нефизической (x>1) области дисперсионного интеграла. Связь структурных функций T1,2 с моментами глубоконеупругих форм-факторов (F1,2). Операторное разложение на световом конусе. Пример разложения для произведения скалярных токов. Коэффициенты Вильсона. Операторное разложение для тензора Tμ,ν. Правила сумм для моментов глубоконеупругих форм-факторов. Уравнение ренормгруппы для вильсоновских коэффициентов. Зависимость вильсоновских коэффициентов от Q2: аномальные размерностями операторов твиста два и поведение от Q2 глубоконеупругих форм-факторов.
Семинар № 21 Зависимость вильсоновских коэффициентов от Q2 (окончание). Аномалия дивергенции аксиального векторного тока. Вычисление "треугольной" аномалии Адлера-Белла-Джэкива в КЭД (начало): дивергенция аксиального тока на классическом уровне, поправки во втором порядке теории возмущений, регуляризация Паули-Вилларса, тождество Шутена (Schouten).
Семинар № 22 Вычисление "треугольной" аномалии Адлера-Белла-Джэкива (окончание): аномалия как "патология" регуляризации Паули-Вилларса. Замечание о вычислении "треугольной" аномалии в размерной регуляризации, γ5=i γ0 γ1 γ2 γ3. "Треугольная" аномалия для несинглетных и синглетных (по флейвору) аксиальных токов. Сокращение аномалий в киральных калибровочных теориях. Матричный элемент несинглетного аксиального тока по вакууму и π-мезону. Константа fπ. Связь квадрата массы π-мезона и суммы масс u- и d-кварка. Гипотеза частичного сохранения аксиального тока (ЧСАТ). Вычисление ширины распада π0 → γ γ: феноменологический лагранжиан распада π0 → γ γ и вклад π-мезонного резонанса в матричный элемент дивергенции аксиального несинглетного тока по вакууму и двум фотонам. Квадратичная зависимость ширины Γπ0→2γ от Nc.
Доп. информация: Силами кафедры теоретической физики физического факультета Новосибирского государственного университета были выложены исходники записей лекций по теоретической физике ФФ НГУ и семинаров теоротдела ИЯФ им. Г.И. Будкера под свободной лицензией CC-BY-SA 4.0. Все записи доступны online на неофициальном канале YouTube кафедры.
Качество: CAMRip
Формат: MP4
Видео кодек: H.264
Аудио кодек: AC3
Видео: AVC, 1280x720, 961 Kbps, 25.000 fps
Аудио: AC-3, 192 Kbps, 44.1 KHz, 2 channels

Постеры

Соцсети

 

Статистика

Автор: Stepan
Добавлен: 07 апр 2018, 23:20
Размер: 26.21 ГБ
Размер: 28 142 619 376 байт
Сидеров: 0
Личеров: 0
Скачали: 0
Здоровье: 0%
Статус:
Скорость скачивания: 0 байт/сек
Скорость раздачи: 0 байт/сек
Последний сидер: Нет
Последний личер: Нет
Приватный: Нет (DHT включён)
Школьникам, студентам и педагогам Скачать торрент
Скачать торрент
[ Размер 263.91 КБ / Просмотров 1 ]

Поделиться



  • Похожие торренты
    Ответы
    Просмотры
    Последнее сообщение

Вернуться в Школьникам, студентам и педагогам