MIT OCW курс лекций / MIT open courseware [Physics, Astronomy, Electronics] [1999-2009, Физика, Астрономия, Электроника, WEBRip, ENG] (Видеоурок)

Сообщение Stepan » 07 апр 2018, 23:57

MIT OCW курс лекций (1999-2014, WEBRip, ENG) [Физика, Астрономия, Электроника] / MIT open courseware (1999-2014, WEBRip, ENG) [Physics, Astronomy, Electronics]
Страна: США
Тематика: Физика, Астрономия, Электроника
Тип раздаваемого материала: Видеоурок
Продолжительность: 212*~50:00:00
Год выпуска: 1999-2014
Язык: Английский
Перевод: Субтитры(для курсов 8.01, 8.02, 6.002, 8.421, 8.422)
Язык субтитров: ENG
Описание: Курсы проекта MIT OpenCourseWare по физике(8.01 Классическая механика, 8.02 Электричество и магнетизм, 8.03 Колебания и волны, 2.71 Оптика, 8.421-8.422 AMO Физика), астрономии (8.224 Исследование черных дыр), электронике (6.002 Электрические цепи и электроника) от Массачучетского Технологического Института. Курсы 8.01-8.03, 8.224 содержат вводные лекции, а курс 8.01 обзорную For the Love of Physics (May 16, 2011) по которой можно получить представление о проф. Walter Lewin и методах его работы. Для изучающих английский или увлеченных физикой рекумендуется начинать с курсов 8.01-8.03.
Доп. информация:
MIT 2.71 Optics, Spring 2009 (29 Lectures, Prof. George Barbastathis, Prof. Colin Sheppard, Dr. Se Baek Oh)
MIT 6.002 Circuits and Electronics, Spring 2007 (26 Lectures, Profs. Anant Agarwal and Jeffrey H. Lang, sub_en)
MIT 8.01 Physics 1 - Classical Mechanics, Fall 1999 (37 Lectures, Prof. Walter Lewin, sub_en)
MIT 8.02 Physics 2 - Electricity and Magnetism, Spring 2002 (37 Lectures, Prof. Walter Lewin, sub_en)
MIT 8.03 Physics 3 - Vibrations and Waves, Fall 2004 (24 Lectures, Prof. Walter Lewin)
MIT 8.224 Exploring Black Holes, Spring 2003 (6 Lectures, Profs. Edmund Bertschinger and Edwin F. Taylor)
MIT 8.421 Atomic and Optical Physics I, Spring 2014 (25 Lectures, Prof. Wolfgang Ketterle, sub_en+ru)
MIT 8.422 Atomic and Optical Physics II, Spring 2013 (21 Lectures, Prof. Wolfgang Ketterle, sub_en+ru)
This course provides an introduction to optical science with elementary engineering applications. Topics covered in geometrical optics include: ray-tracing, aberrations, lens design, apertures and stops, radiometry and photometry. Topics covered in wave optics include: basic electrodynamics, polarization, interference, wave-guiding, Fresnel and Fraunhofer diffraction, image formation, resolution, space-bandwidth product. Analytical and numerical tools used in optical design are emphasized. Graduate students are required to complete assignments with stronger analytical content, and an advanced design project.
6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collaboratively by Profs. Anant Agarwal and Jeffrey H. Lang.
8.01 is a first-semester freshman physics class in Newtonian Mechanics, Fluid Mechanics, and Kinetic Gas Theory. In addition to the basic concepts of Newtonian Mechanics, Fluid Mechanics, and Kinetic Gas Theory, a variety of interesting topics are covered in this course: Binary Stars, Neutron Stars, Black Holes, Resonance Phenomena, Musical Instruments, Stellar Collapse, Supernovae, Astronomical observations from very high flying balloons (lecture 35), and you will be allowed a peek into the intriguing Quantum World.
In addition to the basic concepts of Electromagnetism, a vast variety of interesting topics are covered in this course: Lightning, Pacemakers, Electric Shock Treatment, Electrocardiograms, Metal Detectors, Musical Instruments, Magnetic Levitation, Bullet Trains, Electric Motors, Radios, TV, Car Coils, Superconductivity, Aurora Borealis, Rainbows, Radio Telescopes, Interferometers, Particle Accelerators (a.k.a. Atom Smashers or Colliders), Mass Spectrometers, Red Sunsets, Blue Skies, Haloes around Sun and Moon, Color Perception, Doppler Effect, Big-Bang Cosmology.
In addition to the traditional topics of mechanical vibrations and waves, coupled oscillators, and electro-magnetic radiation, students will also learn about musical instruments, red sunsets, glories, coronae, rainbows, haloes, X-ray binaries, neutron stars, black holes and big-bang cosmology.
Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advanced models of the Cosmos.
This is the first of a two-semester subject sequence that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include the interaction of radiation with atoms: resonance; absorption, stimulated and spontaneous emission; methods of resonance, dressed atom formalism, masers and lasers, cavity quantum electrodynamics; structure of simple atoms, behavior in very strong fields; fundamental tests: time reversal, parity violations, Bell's inequalities; and experimental methods.
This is the second of a two-semester subject sequence beginning with Atomic and Optical Physics I (8.421) that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include non-classical states of light–squeezed states; multi-photon processes, Raman scattering; coherence–level crossings, quantum beats, double resonance, superradiance; trapping and cooling-light forces, laser cooling, atom optics, spectroscopy of trapped atoms and ions; atomic interactions–classical collisions, quantum scattering theory, ultracold collisions; and experimental methods.
update1_03.05.2015: Исправлена ошибка в курсе 8.02 лекциях 4, 13, 14; 8.03 16, 19. Добавлены материалы курсов 8.01-8.03 отдельным каталогом. Добавлены курсы 8.421, 8.422. Просьба скачать .torrent заново.
Качество: WEBRip
Формат: MP4
Видео кодек: H.264
Аудио кодек: AAC
Видео: MPEG4 Video (H264), 320x240, 4:3, 244 kbps, 15.00fps
Аудио: AAC, 93.6kbps, 44100Hz, 2 ch





Автор: Stepan
Добавлен: 07 апр 2018, 23:57
Размер: 54.2 ГБ
Размер: 58 196 242 809 байт
Сидеров: 0
Личеров: 0
Скачали: 0
Здоровье: 0%
Скорость скачивания: 0 байт/сек
Скорость раздачи: 0 байт/сек
Последний сидер: Нет
Последний личер: Нет
Приватный: Нет (DHT включён)
Школьникам, студентам и педагогам Скачать торрент
Скачать торрент
[ Размер 191.44 КБ / Просмотров 0 ]


  • Похожие торренты
    Последнее сообщение

Вернуться в Школьникам, студентам и педагогам